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Multigrid is Optimal: convergence rate is
iIndependent of discretization parameters

Want (nearly) constant solution time
as problem size grows in proportion
to the number of processors
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Multigrid methods use
coarse grids to efficiently
damp out smooth error
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We are developing geometric multigrid
for semi-structured-grid problems

e Grids are mostly—but not entirely—structured

e Examples: block-structured grids, structured adaptive
mesh refinement (AMR) grids, overset grids

e Basic idea: exploit grid
structure where present
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e Focusing now on solvers
for AMR (for APDEC)
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We are developing parallel Fast Adaptive
Composite Grid (FAC) methods for AMR

e AMR application developers have had little
linear solver library support
— Usually have to “roll their own” solvers
— Currently hypre is being used for level & bottom
solves

e FAC was designed specifically for AMR
(McCormick)
— Utilizes the grid hierarchv

. LibiXPligirigalied “level -
solvers like FAC require

(additional) information
about structure
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Semi-structured grid interface (SEMI) is
our vehicle to deliver FAC... and more

e SEMI is one of hypre’s
conceptual interfaces

e AMG, ILU, already available

e Currently used by ASClfor 7 ° 71
block-structured apps

e Augmenting for AMR users .
— more natural way of handling t N + N\
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e Releasing a spec & impl s

— De facto standard A block-structured grid with
— PETSc solver availability 3 variable types and 3
— CTS? component discretization stencils
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We are interacting closely with APDEC

e Integration into Chombo is in progress
— hypre level | bottom solvers available
— Some performance issues to be resol\
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e Implementing parallel FAC code
— Works in serial; finishing up for parallel

e Developing FAC for anisotropic problems
— Needed for fusion applications

e New non-Galerkin option in PFMG for level
solves
— Retains discretization stencil on all MG levels
— Reduces storage requirements
— 2x speedup in 2D; expect even more in 3D

TerConstant-coefficient solvers



First release of hypre featuring the Babel
language interoperability tool

e Babel provides:
— language interoperability
— 0O support

o Betarelease 1.8.0b uses
Babel for two major
interface classes:

— |J system builders
— ParCSR solvers (e.g., AMG)

e Long term plan: Migrate all hypre interfaces to Babel
to improve and expand language support

e Babel / SIDL crucial for PETSc-hypre interoperability
plans and CTS? interactions
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We are speeding up tokamak simulations
through PETSc-hypre combo

e CEMM’s M3D code is built upon
PETSc’s distributed data structures

e hypre’s AMG solver (via PETSc) is

now speeding up simulations
— Perfect iteration scaling
— Still performance issues to resolve NSTX sawtooth, showing

— Time is halved or better for large runs pressure contours and
surface with some B-lines
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We are generalizing our AMG framework
to address new problem classes

e Maxwell and Helmholtz problems have huge near
null spaces and require more than pointwise
smoothing to achieve optimality in multigrid

Model of a section of the Next
Linear Collider structure

Resonant frequencies in
a Helmholtz Application

e Our new theory allows for any type of smoother, and
also works for a variety of coarsening approaches
(e.g., vertex-based, cell-based, agglomeration)

e A paper is in the works (will submit any day now)
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The new theory separates construction of
coarse-grid correction into two parts

e The following measures the ability of a given coarse

grid Q). to represent algebraically smooth error:

* = min max u(PR, e
H N max h( )

e Theorem: (1) Assume that u* < K for some constant K.
(2) Assume that any one of the following holds for n > 1:

(4 Qe, Qe> <N (de,e), Ve
CA(I-0Q)e, (I-0)e) <nde,e), Ve
<APec, Ses>2 <(1l-m 1) <APec, Pec> <ASeS, Ses> , Vec, es
Then, W(PR, e) < nkK, Ve.
e (1) insures coarse grid quality — use CR
e (2) insures interpolation quality — necessary condition!
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CR is an efficient method for measuring
the quality of the set of coarse variables

e CR (Brandt, 2000) is a modified relaxation scheme
that keeps the coarse-level variables, Ru, invariant

e We have defined several variants of CR, and shown
that fast converging CR implies a good coarse grid:

< A )1
- 2—® 1—pcr

e Hence, CR can be used as a tool to efficiently
measure the quality of a coarse grid!

e General idea: /If CR is slow to converge, either increase
the size of the coarse grid or modify relaxation

e F-relaxation is a specific instance of CR
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Using CR to choose the coarse grid
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Using CR to choose the coarse grid
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Using CR to choose the coarse grid
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Using CR to choose the coarse grid
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Using CR to choose the coarse grid
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